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The bistable state of a twisted nematic liquid crystal cell with weak
anchoring boundary

ZHANG SUHUA*{, AN HAILONG{, GUAN RONGHUA{ and YANG GUOCHEN{

{School of Science, Hebei University of Technology, Tianjin 300130, PR China

{Applied Physics Institute of North China Electric Power University, Baoding 071003, PR China

(Received 31 May 2005; in final form 20 October 2005; accepted 20 October 2005 )

On the basis of the modified general Rapini–Papoular expression for the anchoring energy, a
twisted nematic liquid crystal cell has been studied analytically. In this paper, a new variable
is introduced and is suitable for the calculation of the threshold point and the saturation
point. The free energy being smallest in the equilibrium state, we find that bistable states can
be formed from the uniform twisted state plus the disturbed state, the disturbed state plus the
saturation state, and the uniform twisted state plus the saturation state.

1. Introduction

Surface effects of liquid crystals are important for both

device application and basic understanding of physical

phenomena. Surface-induced alignment has long been

used to obtain the uniform alignment of a nematic

liquid crystal (NLC) for practical as well as measure-

ment purposes. However the mechanism of the director

alignment of a liquid crystal (LC) film by the substrate

surface is not well understood. To quantify how

strongly a NLC is oriented or anchored, the interfacial

free energy gs, also called anchoring energy, has been

introduced. Rapini and Papoular have proposed a

simple phenomenological expression for the anchoring

energy per unit area [1]:

g
s
~

1

2
A sin2 h ð1Þ

where h is the angle between the easy direction e and the

director n of the NLC at the nematic–wall interface, and

A is the anchoring strength. This is the so-called RP

formula.

The RP formula describes many effects successfully in

the presence of a surface. However, it is found that

results calculated from the RP formula do not agree

well with the experimental observations in some cases

(for example, the distortions of the director in strong

external fields)[2]. Many authors have introduced new

anchoring energy forms to replace the RP formula:

Yang et al. express gs in Legendre polynomial functions

of sin h [3–6]. Barbero et al. expand gs into a Fourier

series [7]. Barnik et al. [8] utilize the elliptic function of h
as the functional form of gs [8]. The lowest order series

modification of equation (1) can be expressed as

gs~A sin2 h 1zf sin2 h
� �

ð2Þ

where f is a modified parameter. This form has been

investigated experimentally by some authors [4, 8], and

at present is generally accepted [9].

We now follow Jérǒme [10] and generalize this

formula to the two-dimensional case:

gs~{
A

2
n:eð Þ2 ð3Þ

which is a nonlinear combination of the azimuthal and

polar angles and is called the general RP expression for

the anchoring energy. With loss of generality, we

introduce a parameter f9 in equation (3) as the modified

RP formula:

gs~{
A

2
n:eð Þ2 1zf0 n:eð Þ2

h i
ð4Þ

which is called the modified general RP expression. We

shall mainly use this formula of interfacial potential in

this paper.

A great deal of work has been done on the study of

the physical effects of weak anchoring liquid crystal

cells. It was recently proved that a first order

Fréedericksz transition would appear in weak anchor-

ing NLC cells [11, 12]. By means of a LC light valve, an

experiment has been realized to render a Fréedericksz

transition over a large area nematic film [13].The first

order transition is always related to the bistable state,*Corresponding author. Email: zhangsuhua76@163.com
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which is helpful in the design of bistable twisted nematic

liquid crystal displays. According to statistical thermo-

dynamics, the free energy G of the stable state is the

smallest among all solutions; others relate to the

metastable state. If there are two solutions that together

make G the smallest (they have the same value), then

the bistable state is formed. Others have derived the

threshold strength and saturation strength of the TNLC

cell with weak anchoring boundaries [14]. But an

unusual case emerges in the results, that the threshold

strength may be lagrer than or equal to the saturation

strength, and this may lead to the bistable state. In this

paper, we will study the bistable state from the review

the free energy.

On the basis of the modified general Rapini–Papoular

expression for the anchoring energy, we study the

property of the bistable state for the weak anchoring

TNLC cell analytically. In § 2, we obtain fundamental

equations and discuss their solutions. In § 3, a new

variable is introduced, and the fundamental equations

are rewritten. In § 4, supposing the transition is of

second order, the threshold field strength and the

saturation field strength are calculated; in § 5, compar-

ing the free energy of every solution, we find that the

bistable state can be formed from the uniform twisted

state plus the disturbed state, the disturbed state plus

the saturation state and the uniform twisted state plus

the saturation state. When the bistable state is formed,

the threshold field strength or the saturation strength is

calculated and is compared with literature the results

[14].

2. Fundamental equations and solutions

For a TNLC cell, two substrates lie in the Z50 and Z5l

planes. Assuming the two substrates are identical,

the easy direction e in the Z50 plane is parallel to the

direction of the X-axis, and the easy direction e in

the Z5l plane is parallel to the direction of the Y-axis.

The surface energy takes the form of equation (4). The

applied field is parallel to the Z axis.

The easy direction e and the director n can be written

as follows:

edown~ 1, 0, 0ð Þ ð5Þ

eup~ 0, 1, 0ð Þ ð6Þ

n~ cos h cos w, cos h sin w, sin hð Þ ð7Þ

where h is the tilt angle and w is the azimuthal angle,

which are functions of Z, written as h(z) and w(z). The

Gibbs free energy per unit volume in the cell is given by

Gb~
1

2
f hð Þ dh

dz

� �
z

1

2
h hð Þ dw

dz

� �2

{
1

2
xaH2 sin2 h ð8Þ

where

f hð Þ~K11 1zc1 sin2 h
� �

ð9Þ

h hð Þ~cos2 hK22 1zc2 sin2 h
� �

ð10Þ

and c15(K332K11)/K11, c25(K332K22)/K22, K11; K22 and

K33 are Frank splay, twist and bend elastic constants,

and xa is the magnetic anisotropy of the TNLC medium.

The surface energy per unit area can be expressed as:

gs z~0j ~{
A

2
cos2 h0 cos2 w0 1zf0 cos2 h0 cos2w0

� �
ð11Þ

gsjz~i~{
A

2
cos2 hl sin2 wl 1zf0 cos2 hl sin2 wl

� �
ð12Þ

where h0 and w0, hl and wl are the value of h and w at

Z50 and Z5l, respectively. The total energy of the

system is

G~S

ðl

0

1

2
f hð Þ dh

dz

� �2

z
1

2
h hð Þ dw

dz

� �2

{
1

2
xaH2 sin2 h

" #

dz

{S
A

2
cos2 h0 cos2 w0 1zf0 cos2 h0 cos2 w0

� �

{S
A

2
cos2 hl sin2 wl 1zf0 cos2 hl sin2 wl

� �

ð13Þ

where S is the area of the substrate.

Applying the calculus of variations [15], we obtain

equations for h and w:

f hð Þ d
2h

dz2
z

1

2

df hð Þ
dh

dh

dz

� �2

{
1

2

dh hð Þ
dh

dw

dz

� �2

zxaH2 sin h cos h~0

h hð Þ dw

dz
~C1 ð15Þ

where

C1~A cos2 h0 cos w0 sin w0 1z2f0 cos2 h0 cos2 w0

� �
: ð16Þ

The boundary conditions are

f h0ð Þ
dh

dz

� �

z~0~ A cos h0 sin h0 cos2 w0

1z2f0 cos2 h0 cos2 w0

� �
ð17Þ

�������

(14)

(17)

228 Z. Suhua et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
1
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



h h0ð Þ
dw

dz

� �

z~0j ~A cos2 h0 cos w0 sin w0

1z2f0 cos2 h0 cos2 w0

� �
ð18Þ

The equations (14) and (15) with the boundary

conditions (17) and (18) have three solutions, of which

two are trivial. The solutions and corresponding Gibbs

free energy are as follows:

(1) Uniform twisted solution: h;0

Gu~S
pK22

ll

p

l
cos2 w0 sin2 w0 1z2f0 cos2 w0

� �2
h

{2 cos2 w0 1zf0 cos2 w0

� �� ð19Þ

w zð Þ~w0z
A cos w0 sin w0 1z2f0 cos2 w0

� �

K22
z ð20Þ

where w0 satisfies

p

2
{2w0

cos
p

2
{2w0

� �
1z2f0 cos2 w0ð Þ

~
p

2l
ð21Þ

and l is the reduced anchoring energy strength,

written as l5pK22/Al.

(2) Saturation solution: h;p/2

Gs~{
1

2
xaH2lS: ð22Þ

(3) Disturbed solution: h5h(z), w5w(z), where h and

w satisfy, respectively:

1

2
~

ðhm

h0

ffiffiffiffiffiffiffiffiffiffiffi
N hð Þ

p
dh

p

4
{w0~

ðhm

h0

C1

h hð Þ
ffiffiffiffiffiffiffiffiffiffiffi
N hð Þ

p
dh

with the boundary condition:

f h0ð Þ
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N h0ð Þ

p ~A cos h0 sin h0 cos2 w0

1z2f0 cos2 h0 cos2 w0

� �

where

N hð Þ~ f hð Þ
xaH2 sin2 hm{sin2 h

� �
zC2

1
1

h hmð Þ{
1

h hð Þ

h i ð26Þ

N h0ð Þ~N hð Þ h~h0
j ð27Þ

Gd~S
1

2
xaH2 sin2 hml{4

ð l
2

0

sin2 h dz

 !

z
C2

1 lS

2h hmð Þ

{AS cos2 h0 cos2 w0 1zf0 cos2 h0 cos2 w0

� �
ð28Þ

and hm is the value of h at Z51/2.

We now discuss the stable solution, with the

application of an external magnetic field H increasing

from 0. If H is small, Gu is the smallest among the three

Gibbs free energy values, and the stable solution is the

uniform twisted solution (19). As H increases continu-

ously and beomes equal to or bigger than a critical

value, Gh is smaller, and the stable solution is the

disturbed solution (28); H is then at the threshold field

strength, Hth. When H is equal to or bigger than the

critical value of H, Gs is the smallest, and the stable

solution is the saturation solution (22). H is then at

saturation field strength, Hsat. From this, we can

determine the transition property of each state.

3. Variable transform

We introduce a new state variable, convenient for the

calculation of the threshold state and saturation state.

Defining parameters and variables;

u~sin2 hm, v~
tan2 h

tan2 hm

, v0~
tan2 h0

tan2 hm

: ð29Þ

The reduced field strength h, and reduced free energy g

are:

h~
H

H0
c

, H0
c ~

p

l

K11

xa

� �1
2

ð30Þ

g~
lG

K11S
: ð31Þ

By means of these parameters and variables, the

equations (23)–(26) can be rewritten as

p

2
h~

ð1

v0

1{uzuvzc1uv

1{v

� �1
2 1

1zX

� �
1

2 v
1
2 1{uzuvð Þ

dv

p
2
{2w0

� �
1{uzuv0ð Þ2

cos p
2
{2w0

� �
1{uzuv0z2f0 1{uð Þcos2 w0½ �

~
1

hl

ð32Þ

|

ð1

v0

1{uzuvð Þ2

1{uzuvzc2uvð Þ
1{uzuvzc1uv

1{v

� �1
2

1

1zX

� �1
2 1

2 v
1
2 1{uzuvð Þ

dv ð33Þ

(23)

(24)

(25)
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h~
K22

K11

1

l

cos2 w0 1{uzuv0z2f0 1{uð Þcos2 w0

� �
v

1
2

0

1{uzuv0ð Þ 1{uzuv0zc1uv0ð Þ
1
2 1{v0ð Þ 1zX0ð Þ

1
2

ð34Þ

where

X~
K22

K11

1

l2h2

cos2 w0 sin2 w01{uzuv0z2f0 1{uð Þcos2 w0

� �2

1{uzuv0ð Þ4

|
1{uzuvð Þ 1{uzuvzc2uv{ 1zc2uð Þ 1{uzuvð Þ2

h i

u 1{vð Þ 1zc2uð Þ 1{uzuvzc2uvð Þ

ð35Þ

X0~X v~v0
:j ð36Þ

The reduced free energy of each solution can be

rewritten as:

gu~
1

2

K22

K11

p

l

p
l cos2 w0 sin2 w0 1z2f0 cos2 w0

� �2

{2 cos2 w0 1zf cos2 w0

� �

" #

ð37Þ

gs~{
1

2
p2h2 ð38Þ

gd~
hp2u

2
h{

4

p
I2

� �
z

p2

l2

K22

K11

1{uð Þcos2 p
2
{w0

� �
1{uzuv0z2f0 1{uð Þcos2 w0

� �2

8 1{uzuv0ð Þ4 1zc2uð Þ

{
p

l

K22

K22

1{u

1{uzuv0ð Þ2
cos2 w0

1{uzuv0zf0 1{uð Þcos2 w0

� �
:

ð39Þ

We now define several integrals:

I1~

ð1

v0

M vð Þdv ð40Þ

I2~

ð1

v0

v

1{uzuv
M vð Þdv ð41Þ

I3~

ð1

v0

1{uzuvð Þ2

1{uzuvzc2uv
M vð Þdv ð42Þ

where

M vð Þ~ 1{uzuvzc1uv

1{v

� �1
2 1

1zX

� �1
2 1

2 v
1
2 1{uzuvð Þ

ð43Þ

equations (30) and (31) can then be rewritten as:

p

2
h~I1 ð44Þ

p
2
{2w0

� �
1{uzuv0ð Þ2

cos p
2
{2w0

� �
1{uzuv0z2f0 1{uð Þcos2 w0½ �

~
1

hl
I3: ð45Þ

Based on the equations (32)–(34), for a given u, we

can solve n0, w0 and h; we can then calculate the free

energy of each solution and compare their values. The

most stable state can be decided and the bistable state

also determined.

4. The threshold state and the saturation state of the

second order transition

4.1. The threshold field strength for the second order
transition

We suppose that the transition from the uniform

twisted state to the disturbed state is of second order

and the transition is continuous, and we discuss the

threshold field strength hth and the saturation field hsat.

Fistly we consider hth; the threshold field strength can

be easily obtained from the equations and boundary

conditions. When u50, from the equations (32)–(34), we

obtain:

p

2
hth~

1

1zXth

� �1
2
ð1

v0

1

2 v 1{vð Þ½ �
1
2

dv ð46Þ

p
2
{2w0

� �

cos p
2
{2w0

� �
1z2f0 cos2 w0ð Þ

~
1

hthl

1

1zXth

� �1
2
ð1

v0

1

2 v 1{vð Þ½ � dv

hth~
K22

K11

1

l

cos2 w0 1z2f0 cos2 w0

� �
v

1
2

0

1{v0ð Þ
1
2 1zXthð Þ

1
2

: ð48Þ

Equation (35) can be rewritten as

Xth~
K22

K11

cos2 w0 sin2 w0 1z2f0 cos2 w0

� �2

l2h2
th

1{c2ð Þ: ð49Þ

From equations (46) and (47), we obtain:

p
2
{2w0

� �

cos p
2
{2w0

� �
1z2f0 cos2 w0ð Þ

~
p

2l
ð50Þ

and equation (48) yields

v0

1{v0

� �1
2

~tan
p

2
hth 1zXthð Þ

1
2

h i
ð51Þ

(47)
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substituting equation (51) into the equation (48), gives:

hth~
K22

K11

1

l

cos2 w0 1z2f0 cos2 w0

� �

1zXthð Þ
1
2

tan
p

2
hth 1zXthð Þ

1
2

h i
: ð52Þ

We can then solve the threshold field from equa-
tions (49), (50) and (52).

4.2. The saturation field strength for the second order
transition

We now consider the saturation field strength hsat.

From equations (32)–(34), let hm? p
2
, giving:

p

2
hsat~ 1zc1ð Þ

1
2

ð1

v0

1

1zXsat

� �1
2 1

2v 1{vð Þ½ �
1
2

dv ð53Þ

p
2
{2w0

� �
v0

cos p
2
{2w0

� �~
1zc1ð Þ

1
2

hsat l 1zc2ð Þ

ð1

v0

1

1zXsat

� �1
2 1

2 1{vð Þ
1
2

dvð54Þ

hsat~
K22

K11

1

l

cos2 w0

1zc1ð Þ
1
2 1zX0satð Þ

1
2 1{v0ð Þ

1
2

ð55Þ

where

Xsat~
K22

K11

cos2 w0 sin2 w0v

l2h2
satv

2
0 1zc2ð Þ

ð56Þ

X0 sat~X0 u~1j ð57Þ

From these equations, we can calculate the saturation

field.

4.3. The calculation results

Figures 1–3 show the results of numerical calculations

in which we take K33/K1151.5; K22/K1150.6 [14]. From

these three figures, it can be seen that the threshold field

may be larger than the saturation field, although this

case is unusual. In figure 1, where f950.2, the unusual

case emerges when l.0.77; in figure 2, where f950, the

unusual case emerges when l.1.07. This is the same as

results in the literature [13]. When f9520.2, the

saturation field strength is larger than the threshold

field strength, the usual situation. The proposition that

all transitions are of second order leads to, meaningless

calculation results.

5. The bistable state

In principal, when H increases from zero, the nature of

the transition from the uniform twisted solution to the

disturbed solution to the saturation solution can be

judged by comparing the free energy of each solution. If

the free energy of two solutions is equal and is the

smallest, but u is different, the two states form a bistable

state. We will study the nature of the transition for

different values of the reduced anchoring energy l.

5.1. The reduced anchoring energy is very small, l<0.5

From figure 4 (a) we can see that one magnetic field

value h corresponds to two values of u; and this

indicates the disturbed solution, where gd has two

solutions for a given magnetic field h. From figure 4 (b)

we see that when the magnetic field strength h is equal

to the threshold field strength hth, the free energy of the

Figure 1. Threshold field hth and saturation field hsat versus the reduced anchoring strength l; f950.2.
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uniform twisted solution gu is equal to that of the

disturbed solution gd, and the director is parallel to

the substrates, u50. As h increases, the free energies of

the disturbed solution gd and the saturation solution gs

decrease at same time; when hth,h,0.799257, gd is at a

minimum and the disturbed state is the stable state,

when h50.799257, gd is equal to gs. For the disturbed

solution, u50.78, and for the saturation solution, u51,

the transition from the disturbed state to the saturation

state occurs at this point and the two states form the

bistable state. The transition is sudden and is a first

order transition; the corresponding magnetic field

strength h is termed the saturation field strength of

the first order transition, written as hx
sat.

From the figure 5 we can see that the threshold field

strength hth is smaller than the saturation field strength

hsat; as h increase, the deviation of the director increases

continuously. When u50, the field strength is the

threshold strength hth, and the free energy of

the uniform twisted solution gu is equal to that of the

disturbed solution gd. A second order transition occurs

between the uniform twisted and the disturbed solu-

tions; when u51, the field strength is the saturation

strength hsat, and gd is equal to gs. The second order

transition h occurs at this point.

For f9520.2 and l50.6, a similar calculation

produces results the same as for figure 5.

5.2. The reduced anchoring energy l<1

The result depicted in figure 6 is analogous with that

shown in figure 4. When h50.704056, the free energy of

the disturbed solution gd is equal to that of the

saturation solution gs. For the disturbed solution,

u50.56, and for the saturation solution, u51; they

form the bistable state.

From figure 7 can be seen that, as u increases, h first

decreases and then increases. When h,0.517328, the

free energy of the uniform twisted solution gu is the

smallest and the uniform twisted state is the stable state;

the director is parallel to the substrate and u50, when

h50.517328, gu is equal to gd; for the disturbed solution,

u50.64. The uniform twisted state and the disturbed

state form a bistable state. The corresponding field

strength is termed the threshold strength of the first

order, written as hx
th.

For f9520.2 and l51, the results are similar to those

of figure 5. The director deviates from the substrate

continuously, and the transition between the uniform

twisted state, the disturbed state and the saturation state

is continuous.
Figure 3. Threshold field hth and saturation field hsat versus
the reduced anchoring strength l; f520.2.

Figure 2. Threshold field hth and saturation field hsat versus the reduced anchoring strength l; f950.
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5.3. The reduced anchoring energy is very large, l<20

From figure 8 it can be seen that as u increases, h

decreases. When h,0.105154, the uniform twisted state
is the most stable; as h increases, the free energies of the

disturbed solution gd and the saturation solution gs

both decrease, but the saturation solution decrease

more rapidly. When h50.105154, the free energy of the

uniform twisted solution gu is equal to gs; for the

uniform twisted state, u50, but for the saturation state,

u51.The uniform twisted state and the saturation state

form the bistable state. The change of the director is

sudden. The field strength is the saturation field of the

first order. In this situation, the threshold field strength

is meaningless

The results depicted in figure 9 are similar to those of

figure 8, the uniform twisted state and the saturation

state form the bistable state. When f9520.2, l520, the

results are similar to those of figure 5; the transition at

threshold and saturation points is continuous and is of

second order.

Numerical calculations applied to the Fréedericksz

transition, produce the following results. (1) when f9,0,

Figure 5. Plots of (a) u versus h and (b) g versus h; f950, l50.5.

Figure 4. Plots of (a) u versus h and (b) g versus h; f950.2, l50.65.
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the threshold field strength is smaller than the satura-

tion field strength, and the transition at the threshold

and saturation points is second order. (2) When f950, l
takes some value in the vicinity of the intersection of the

threshold field strength and the saturation field

strength, and the uniform twisted state and the

disturbed state form the bistable state. The threshold

field strength of the first order transition is calculated

and is compared with the field strength of the second

order transition in figure 2. As we can see, the threshold

field strength for the first order transition is smaller, not

only than the saturation field strength, but than the

threshold field strength of the second order transition.

This is consistent with previous results [11]. When

f950.2, l takes some value in the vicinity of the

intersection of the threshold field strength and

the saturation field strength, the disturbed state and

the saturation state form the bistable state. The

saturation field strength of the first order transition is

calculated and is compared with the field strength of the

second order transition in figure 1. (3) When f9>0 the

unusual case emerges; l takes an arbitrary value, and

the uniform twisted state and the saturation state can

form a bistable state. The saturation field strength is

Figure 6. Plots of (a) u versus h and g versus h; f950.2, l50.77.

Figure 7. Plots of u versus h and g versus h; f950, l51.07.
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calculated, giving the dotted curves plotted in figures 1

and 2. In this situation, the threshold field strength is

meaningless.

6. Conclusion

In this paper, we report a study of the bistable state of a

weak anchoring NTLC cell. The results indicate that

under different conditions, the uniform twisted state

and the disturbed state, the disturbed state and the

saturation state, and the saturation state and the

uniform twisted state, can form bistable states; we

calculate the threshold field strength and the saturation

field strength. This may help in the design of a SBE cell

with weak anchoring.
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[10] B. Jérǒme. Rep. Prog. Phys., 54, 391 (1991).
[11] G. Yang, S. Zhang. Liq. Cryst., 29, 641 (2002).
[12] G. Yang, J. Shi, Y. Liang. Liq. Cryst., 27, 875

(2000).
[13] M.G. Clere, S. Residoti, C.S. Riera. Phys. Rev. E, 63,

060701(R) (2001).
[14] A. Sugimura, G.R. Luckhurst, O.-Y. Zhong-Can. Phys.

Rev. E., 52, 681 (1995).
[15] L. Elsgots. Differential Equations and Variation

Calculus. MIR, (1980); Moscow, V. Mirnov, Caurs de
Mathematiques Superieures, Tome IV, (MIR, Moscow)
(1975).

236 Bistable twisted nematic LCs

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
1
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


